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1 Introduction

The piece is based on research I did as a theoretical physicist in first half of the 1990s. At
that time I was interested in a phenomenon, called Self-Organized Criticality. I studied
it in some models. On of the models was the Frenkel-Kontorova model. This is a simple
mechanical model of particles in a row connected by springs. The particles are in a
spatially periodic force field. The particle motion is damped by a force proportional
to their velocity. The space is one-dimensional. In my studied I let one end of the
chain of particles moving very slowly.1 This movement lead to instabilities which causes
rearrangement of the particles. These rearrangement are like outbursts or ’avalanches’ in
the system.

The main idea for quivering quicksand was to map the positions of the particles onto the
frequencies of some oscillators. In addition the kinetic energy of the particles should be
used to control the amplitude of the oscillators.

Therefore the sound of quivering quicksand is created in four steps:

1. Integrate the Frenkel-Kontorova model numerically.

2. Map the time, positions and velocities onto the time, frequencies and amplitudes of
the oscillators.

3. Choose the mapping parameters in accordance to a schema and specific events.

4. Pan the oscillator signals onto sound channels.

The piece should be presented in a large room with eight loudspeakers arranged in a circle.
In addition there should be one or two subwoofers.

There are two different events which trigger a change in mapping parameters of step 3.
One is triggered when the kinetic energy (which is roughly the overall loudness) is below
a threshold. The second event happens when a person is close to a ultrasonic distance
detector which should be installed near the entrance of the room of the sound installation.

1Franz-Josef Elmer: Self-Organized Criticality in the Weakly Driven Frenkel-Kontorova Model, Hel-
vetica Physics Acta, Vol. 66, 1993
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2 The weakly driven Frenkel-Kontorova Model

The Frenkel-Kontorova model is defined by the following set of differential equations:

ẍi + gẋi + ∂V/∂xi = 0, i = 1, ..., N, (1)

where V (the external potential, causing the spatially periodic force field) is defined by

V =

N∑
i=1

1

2
(xi − xi−1 + a)2 − b cosxi (2)

xi is the position of the ith particle, g is the damping constant, a the equilibrium length
of the springs, and b is the strength of the external potential.

There are N + 1 particles, x0, ..., xN . The particles xi, for i > 0 are governed by the
differential equations specified above. But the particle x0 is controlled externally: It will
be moved by small constant velocity v, i.e. x0(t) = x0(0) + v · t.

The set of differential equations will be integrated numerically with the fixed step size ∆t.
For more details see Appendix A.

3 Mapping

The sound of quivering quicksand is created by N sinusoidal oscillators.

3.1 Frequency Mapping

The frequencies fi of these oscillators are determined by the positions xi by a linear
mapping:

fi = foffset + fscale · (xi − xindex) (3)

3.2 Amplitude Mapping

The amplitudes Ai of the oscillators are determined by the velocities ẋi or more precisely
by the kinetic energy ẋ2

i /2. The mapping is not a simple linear mapping of the kinetic
energy to the amplitude. First, the kinetic energy is discretized. Second, the discretized
kinetic energy is smoothed over time. Third, from the smoothed discretized kinetic energy
the amplitude is calculated.
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Discretizing

The kinetic energy

Ei =
ẋ2
i

2
(4)

is discretized by the discretization parameter h as follows:

Edi = floor

(
Ei

h̃

)
h̃, with h̃ =

h

N

N∑
i=1

Ei, (5)

where floor(x) is the largest integer ≤ x.

This discretization leads to the musical effect that for h� 1 almost all Edi are zero except
for a few. Edi will be scaled up by a factor in order to avoid that the sound becomes too
low compared to cases where h� 1. The rescaled discretized kinetic energy reads

Ẽdi =

(∑N
i=1Ei∑N
i=1E

d
i

)2

Edi (6)

Smoothing

In order to smooth Ẽdi (t) the following linear differential equation is solved:

dĒdi
dt

= − κ

∆t
·
(
Ēdi − Ẽdi (t)

)
(7)

The smoothed discretized kinetic energy at time point tk+1 = (k + 1) ·∆t reads:

Ēdi (tk+1) =
(
Ēdi (tk)− Ẽdi (tk)

)
e−κ + Ẽdi (tk+1)−

(
Ẽdi (tk+1)− Ẽdi (tk)

)1− e−κ

κ
(8)

For more details see Appendix B.

Amplitude

The amplitude Ai of oscillator i at time point tk is calculated as follows:

Ai(tk) = A0

√
Ēdi (tk). (9)

3.3 Tempo Mapping

For determine the tempo the total kinetic energy

Etotal =
1

N

N∑
i=1

ẋ2
i

2
(10)
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is smoothed similarly as the discretized kinetic energy for the amplitude mapping. The
smoothed total kinetic energy Ētotal is calculated in accordance with Appendix B by using
µ = g.

The tempo is determined by the rate of calculating the solution of the Frenkel-Kontorova
model for the next time point. The real time step ∆T is determined by

∆T = floor(ρA0

√
Ētotal) (11)

4 Distribution of Oscillator Signals onto Channels

It is assumed that there are M loudspeakers (except of the subwoofers) arranged in a
circle. For each oscillator i a virtual position on the circle is determined by

si = η ·
( xi
aN

+ 1
)

(12)

The signal is distributed over all M channels where the channels near the virtual position
get the largest amplitudes. This distribution is determined by the following function

β(s) = floor(s) +
1

2
+

2s̄− 1

2
√

2s̄(1−s̄)
σ + (2s̄− 1)2

, with s̄ = mod(s, 1) (13)

This is a function which has steps (of size σ) at integer values. The value between the
steps is given by floor(s) + 1/2.

The amplitude Ami of oscillator i for channel m is determined by

Ami = Ai

√
β(ξmi + ∆ξm)− β(ξmi −∆ξm) (14)

where Ai is determined by Eq. (9) and

ξmi =
m− 1

M
− s, i and ∆ξm =

1

2M
(15)

Note, that
∑
m |Ami |2 = A2

i because β(s+ 1) = β(s) + 1.

5 Parameter Combinations

There are many parameters which determine the sound. Their actual values are kept
constant until an event happens and new values are chosen. Infinite many values are
possible because most of the parameters can have values from a continuum of numbers.

This has been restricted to finite sets of values for a subset of parameters pj , for j = 1, ..., J :

pj ∈ {pj1, pj2, ..., pjlj , ..., pjLj
}, for j = 1, ..., J (16)
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At any time a given combination l1, l2, ..., lJ is chosen. The total number of combinations
is

NC =

J∏
j=1

Lj (17)

The sequence of combinations is chosen in accordance to the following rules:

1. The next combination differs from the previous one in as many parameters as possible
in order to have a large contrast.

2. All combinations appear in a fixed cyclic order. That is, after the last combination
the first appears again.

See Appendix C for the algorithm which calculates the next combination following these
rules.

6 Events

The next parameter combination is chosen by two different events.

6.1 Kinetic Energy Event

For this event the smoothed total kinetic energy Ētotal (as introduced in subsection 3.3)
is used. The event is triggered when

A0

√
Ētotal < θK (18)

with threshold θK . In order to prevent an immediate next event the trigger is inactive as
long as

A0

√
Ētotal < θ̄K (19)

with θK < θ̄K .

6.2 Distance Event

An ultrasonic distance sensor2 measures continuously the distance to persons in its vicinity.
The event is triggered when the distance is below the threshold θD. The trigger is inactive
during the recovery time Trecover.

2Arduino Uno WiFi Rev2 microcontroller with HC-SR04 ultrasonic sensor
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7 Chosen Parameters

The actual audio experience of quivering quicksand depends strongly on the chosen pa-
rameters.

Here is a list of all chosen parameters, grouped as they have been introduced in the sections
above:

Frenkel-Kontorova Model (section 2)

N = 34, a = 0.5, b = 3, g = 0.01, v = 0.01, ∆t = 0.1

Frequency Mapping (subsection 3.1)

foffset = 300

fscale ∈ {1, 3, 8, 21 }
xindex ∈ {0, 34}

The frequencies foffset and fscale are in Hz.

Amplitude Mapping (subsection 3.2)

κ ∈ {0.01, 0.1, 1}
h ∈ {0.5, 1, 2, 4, 8}
A0 = 0.03

Tempo Mapping (subsection 3.3)

ρ = 200 msec

Channel Distribution (section 4)

η = 0.1, σ = 0.02, M = 8

Kinetic Energy Event (subsection 6.1)

θK = 0.003, θ̄K = 0.006

Distance Event (subsection 6.2)

θD = 150 cm, Trecover = 2000 msec

Note, that there are 120 = 4 · 2 · 3 · 5 different combinations.

A Verlet Algorithm

In order to solve the Ferkel-Kontorova model numerically the Verlet algorithm adapted
for a damped system is used:

xi(tn+1) = xi(tn) + pi(tn)∆t+
(
fi(x(tn))− gpi(tn)

)
(∆t)2/2 (20)

pi(tn+1) =
pi(tn) + [fi(x(tn)) + fi(x(tn+1))− gpi(tn)]∆t/2

1 + g∆t/2
(21)
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where fi(x) = −∂V/∂xi, pi = ẋi, and tn = n∆t.

B Smoothing A Signal

The smoothed signal S̄(t) is the solution of the differential equation

˙̄S = −µ ·
(
S̄ − S(t)

)
, (22)

We assume that the signal S(t) is a piecewise linear function of t where S(t) is specified
at tk = k ·∆t for k = 0, 1, 2, · · ·.

Eq. (22) is a linear inhomogeneous first order differential equation. The standard solving
Ansatz is the solution of the homogeneous differential equation with a time dependent
integration constant C(t):

S̄(t) = C(t)e−µ(t−tk) (23)

This leads to

C(t) = S̄(tk)+µ

∫ t

tk

S(t′)eµ(t′−tk)dt′ = S̄(tk)+S(t′)eµ(t′−tk)
∣∣∣t
tk
−
∫ t

tk

Ṡ(t′)eµ(t′−tk)dt′ (24)

Thus, we get for t = tk+1

S̄(tk+1) =
(
S̄(tk)− S(tk)

)
e−µ∆t + S(tk+1)−

(
S(tk+1)− S(tk)

)1− e−µ∆t

µ∆t
(25)

C Choosing the Next Combination

The following algorithms fulfills the rules described in section 5 (not yet proven mathe-
matically). The next value of the index lj of parameter pj is given by

mod(floor(ναj), Lj) (26)

where ν ∈ {0, 1, ..., NC} is the combination index and αj a rational number which is
calculated as follows:

αj =
Pj
Qj

(27)

where

Qj =

{
1, if j = 1∏j−1
i=1 Li, j > 1

(28)

and Pj is the smallest number ≥ Qj which has no common devisor with Lj . Note, that
the next combination index νnext = mod(νprevious + 1, NC).
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